Accepted Manuscript

Subgroup Differences in Having a Usual Source of Healthcare among Working-Age Adults with and without Disabilities

Konrad Dobbertin, MPH Willi Horner-Johnson, PhD Jae Chul Lee, PhD Elena M. Andresen, PhD

PII: S1936-6574(14)00140-X
DOI: 10.1016/j.dhjo.2014.08.012
Reference: DHJO 343

To appear in: Disability and Health Journal

Received Date: 10 October 2013
Revised Date: 11 August 2014
Accepted Date: 19 August 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Subgroup Differences in Having a Usual Source of Healthcare among Working-Age Adults with and without Disabilities

Konrad Dobbertin, MPH1, Willi Horner-Johnson, PhD1, Jae Chul Lee, PhD2, Elena M. Andresen, PhD1

1Institute on Development & Disability, Oregon Health & Science University, 707 SW Gaines Street, Portland, OR 97239, USA

2Center for Disabilities Studies, College of Education and Human Development, University of Delaware, 461 Wyoming Road, Newark, DE 19716, USA

Corresponding author
Willi Horner-Johnson, PhD
707 SW Gaines Street
Portland, OR 97239
Phone: 503-494-9273
E-mail: hornerjo@ohsu.edu

Keywords: People with disabilities, usual source of health care, disparities, population surveillance

Abstract word count: 241
Manuscript word count: 2461
References: 27
Figures: 0
Tables: 3

Acknowledgements
The authors thank Glenn T. Fujiura, PhD, Lisa I. Iezonni, MD, MSc, Gloria L. Krahn, PhD, MPH, and Jana J. Peterson-Besse, MPH, PhD, for their input on variable selection and coding and feedback on an earlier version of this manuscript. We also thank Barbara M. Altman, PhD, Elizabeth K. Rasch, PT, PhD, and Stephen P. Gulley, PhD, MSW, for consulting with us on how to identify people with disabilities in MEPS data.

This work was supported in part by cooperative agreement #U59DD00942 from the National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention; grant #90DD0684 from the Administration on Intellectual and Developmental Disabilities; and grant #H133A080031 from the National Institute on Disability and Rehabilitation Research, U.S. Department of Education. Additional support was provided by the Institute on Development & Disability at Oregon Health & Science University.
Subgroup Differences in Having a Usual Source of Healthcare among Working-Age Adults with and without Disabilities
Abstract

Background: Having a usual source of healthcare is positively associated with regular health maintenance visits and receipt of preventive services. People with disabilities are, overall, more likely than those without disabilities to have a usual source of care (USC). However, the population of people with disabilities is quite heterogeneous, and some segments of the population may have less access to a USC than others.

Objective: To determine whether there are significant subgroup differences in having a USC within the U.S. population of working-age adults with disabilities, and to compare adults with and without disabilities while controlling for other subgroup differences.

Methods: We analyzed Medical Expenditure Panel Survey annual data files from 2002-2008. We performed both bivariate and multivariate logistic regression analyses to examine the relationship of sociodemographic and disability subgroup variables with having a USC.

Results: Within the disability population, individuals who were younger; male; Black, Hispanic, or other (non-White) race; less educated; of lower income; or uninsured for part or all of the year were significantly less likely to have a USC. These differences mirrored those among adults without disabilities. When controlling for these differences, people with physical, hearing, or multiple disabilities had greater odds of having a USC than people without disabilities, but those with vision or cognitive limitations did not differ significantly from the non-disabled referent group.

Conclusions: Disparities among people with and without disabilities are similar, underscoring the need for attention to disparities within the disability population.
Introduction

Having a usual source of healthcare is positively associated with regular health maintenance visits and receipt of preventive services.1-4 In contrast, individuals without a usual source of care (USC) are more likely to have unmet healthcare needs.5 Unmet healthcare needs are of particular concern for people with disabilities, given their “thinner margin of health” and the potential for untreated health problems to lead to major complications.6,7

Overall, people with disabilities are more likely than those without disabilities to have a USC.8-11 However, the population of people with disabilities is quite heterogeneous, and not all segments of the population necessarily have equal access to a USC. For example, there is evidence of differences related to type of disability and presence of a complex activity limitation.8,12 In the general population, having a USC is associated with income, insurance, race, and ethnicity.5,13-15 Similar disparities may exist among people with disabilities, yet there has been little examination of such disparities. Understanding which segments of the disability population are most likely to lack a USC is important for informing healthcare reform efforts and interventions to reach underserved groups whose health may be particularly vulnerable.

The purpose of the present study was to: 1) identify significant subgroup differences in having a USC within the U.S. population of working-age adults with disabilities; and 2) re-examine comparisons between people with and without disabilities when considering other subgroup differences. We were interested in whether the same kinds of disparities seen in the general population are present for people with disabilities, and how controlling for these disparities might affect differences between people with and without disabilities.

Methods
We created our analytic file by pooling Medical Expenditure Panel Survey Household Component (MEPS-HC) annual data files from 2002-2008. The MEPS is conducted by the Agency for Healthcare Research and Quality to gather nationally representative data on healthcare use and expenditures. Data are collected via in-person interviews with households selected from a subsample of respondents to the previous year's National Health Interview Survey (NHIS), administered by the National Center for Health Statistics. Each sample, called a panel, is followed through five interview rounds covering two calendar years.

We limited our analyses to working-age adults (ages 18-64 years) because healthcare access changes substantially for adults age 65 and older, most of whom are covered by Medicare. Of the 228,365 individuals included in the MEPS for the years 2002 through 2008 there were 133,368 aged 18-64. From this sample 131,799 had no missing data regarding USC. We then excluded observations with missing data on any items related to basic action difficulties (n=571), which we used to identify people with disabilities as described under Measures. Because we created mutually exclusive disability type categories (described below), data were required for each of the basic actions categories. We also excluded individuals with missing data for covariates described below (n=2,095). The final analytic sample of 129,133 included 25,698 people with disabilities and 103,435 with no disability.

Our dependent variable was whether individuals had a USC (yes/no). A follow-up question asked those who answered yes to specify their source of care. If
the emergency department was the usual source of care, respondents were recoded as having no
USC.

Independent Variables. We examined differences related to disability status and type,
presence of complex activity limitation, age, gender, race/ethnicity, urban/rural residence,
socioeconomic status (education, income), and health insurance. Disability was coded based on
basic action difficulties, which are limitations in movement, sensory, cognitive, or emotional
functioning. However, MEPS data only include questions about difficulties with movement,
sensory, and cognitive functions, thus we did not include limitations in emotional functioning.
We categorized people with any reported degree of difficulty as having a disability. Those who
reported no limitations were categorized as having no disability. Disability type was categorized
as no disability (reference group), hearing limitation only, vision limitation only, cognitive
limitations only, physical limitations only, or more than one type. Complex activity limitation
could occur within any group in the disability type variable. Its presence (yes/no) was indicated
by need for assistance with activities of daily living or instrumental activities of daily living or
by limitations in work, social, or recreational activities. Age was coded in the following categories: 18-29 years (reference category), 30-39
years, 40-49 years, 50-59 years, 60-64 years. This grouping ensured ample sample size in each
category while allowing observation of potential non-linear age effects. For gender, males served
as the reference group. Race/ethnicity categories included non-Hispanic White (reference); non-
Hispanic Black; non-Hispanic other races (including American Indian/Alaska Native,
Asian/Native Hawaiian/other Pacific Islander, and people of multiple races); and Hispanic of any
race. We used residence in a Metropolitan Statistical Area (MSA [yes/no]) as an indicator of
urban versus rural location. Education categories were Bachelor’s degree or higher (reference),
other degree, high school diploma or General Education Development (GED), no high school
diploma or GED. Income was analyzed as a percent of federal poverty level: ≥ 400% (reference),
200 to <400%, 125 to <200%, 100 to <125%, and <100%. Health insurance status and type of
insurance were coded in groups used previously by Gulley and colleagues: insured all year and
all or part of that year was private insurance (reference), publicly insured all year, uninsured part
of the year, uninsured all year.

Analyses

We performed bivariate logistic regression analyses to individually examine the
relationship between each independent variable and having a USC. With the exception of the
analysis for disability status/type, all bivariate analyses were stratified by presence of disability
to separately examine patterns for people with and without disabilities. We then conducted a
multivariate logistic regression analysis for people with and without disabilities combined to
assess the effect of each independent variable while adjusting for all other variables. Statistical
analyses were conducted using Stata 12.1 to account for the complex survey design of the
MEPS. Our analyses used Taylor series linearization for variance estimation. We set a p-value of
<0.05 as our cutoff for statistical significance.

Results

Overall, 73.3% of the sample population had a USC. The proportion of people with
disabilities with a USC was 81.5%, while 71.4% of people without disabilities had a USC.
Demographic and insurance characteristics of people with and without disabilities are shown in
Table 1. As noted, complex activity limitation could occur for people with any type of disability.
It was most common among people with physical disabilities (50.8% of whom had a complex
activity limitation), cognitive limitations (51.7%) and more than one type of limitation (72.0%).
Relatively few individuals with hearing (5.2%) or vision limitations (6.3%) had a complex activity limitation. Additionally, a small proportion (2.4%) of people without disabilities (defined as basic action difficulties) reported a complex activity limitation.

There were several statistically significant differences in bivariate (unadjusted) regression analyses. Compared to people without disabilities, people with most types of disabilities were significantly more likely to have a USC. In particular, those with physical limitations only (OR=2.11, 95% CI: 1.94, 2.29) or with more than one type of limitation (OR=2.19, 95% CI: 2.01, 2.38) had more than twice the odds of having a USC. People with hearing limitations (OR=1.71, 95% CI: 1.52, 1.92) or cognitive limitations (OR=1.27, 95% CI: 1.11, 1.47) also had significantly greater odds of having a USC. The exception was people with vision limitations (OR=1.10, 95% CI: 0.99, 1.21), who did not differ significantly from the reference group of people without disabilities.

Among people with disabilities (Table 2), those with complex activity limitations were more likely to have a USC than people without complex limitations. As age increased, the odds of having a USC increased. Women were more likely than men to have a USC. The odds of having a USC were significantly lower among Blacks, Hispanics, and other races when compared to Whites. Lower educational attainment and lower family income both were associated with lower odds of having a USC. People who were uninsured for part or all of the year were much less likely to have a USC. For people without disabilities, identical patterns were observed with one exception: residence outside an MSA was associated with increased odds of having a USC, whereas this effect was not significant among people with disabilities (Table 2).

In the multivariable model for people with and without disabilities (Table 3), patterns of significance were consistent with those seen in the bivariate models, with the following
exceptions. First, people with cognitive limitations no longer differed significantly from the
reference group of people without disabilities. Second, the education effect was reversed such
that people with less education were slightly more likely to have a USC than the college-
educated reference group. Third, those who were publicly insured all year had significantly
higher odds of having a USC compared to those who were also insured all year but some portion
of that was private insurance.

Discussion

Our analyses confirmed previous findings8-11 that adults with disabilities are generally
more likely to have a USC than adults without disabilities. However, we found substantial
variations within the disability population. The odds of having a USC were no different for
individuals with vision limitations than for those with no disability, either in crude or adjusted
models. In the adjusted model, people with cognitive limitations also did not differ significantly
from people without disabilities. In other words, differences between people with cognitive
disabilities and those without disabilities appear to be attributable to age, race, gender,
socioeconomic status, insurance, and/or presence of complex activity limitation. Regardless of
disability type, people with complex activity limitations had greater odds of having a USC than
those without a complex activity limitation. Blacks, individuals in other non-White racial groups,
and Hispanics had lower odds of having a USC compared to Whites. Odds of having a USC were
also lower among those who were younger, male, less educated, poorer, or uninsured some or all
of the year.

Subgroup variations in having a USC within the population of people with disabilities
were very similar to those among people without disabilities. People with disabilities are often
treated as a monolithic population, with little attention to disparities along dimensions other than
disability. Yet racial, socioeconomic, and other disparities impact people with disabilities as well as those without disabilities. Examining differences between subgroups of people with disabilities provides important detail about where interventions are most needed in order for our healthcare system to better serve people who may have the poorest access to care. Identification of differences also serves as an initial step in efforts to understand why those differences exist.

In the general population, the most common reason given for not having a USC is that respondents rarely or never get sick. People with disabilities who are younger, male, or have vision limitations may feel less need for a USC compared to other people with disabilities because they are generally healthier. Indeed, a recent study found that people with vision limitations were among the healthiest within the disability population. Conversely, people with multiple types of disabilities had the highest prevalence of health problems. Similarly, people with complex activity limitations tend to have greater healthcare needs than those without complex activity limitations. It is encouraging that groups with the greatest healthcare needs also have the highest odds of having a USC for addressing those needs. In the absence of a USC, these subgroups of people with disabilities would probably be at particularly high risk of unmet healthcare needs leading to serious health problems and overall deterioration of health.

High cost of medical care is the second most common reason respondents give for not having a USC. It is therefore not surprising that both people with and without disabilities who are poorer or lack insurance are less likely to have a USC. Public Law 111-148, the Patient Protection and Affordable Care Act (ACA), includes provisions to expand public insurance and prevent private insurers from refusing to cover individuals with disabilities. These changes will reduce the extent to which lack of insurance is a barrier to having a USC, and should help address cost issues. However, people with disabilities who are less educated may have greater
difficulty understanding and taking advantage of these changes. Thus, targeted outreach and education efforts may be especially important.

Racial and ethnic disparities within the disability population mirror those seen in the general population and may be related to barriers associated with language, immigrant and citizenship status, previous experiences of discrimination or poor quality care, or mistrust of the medical system. Ongoing work is needed to improve cultural competency of the healthcare system and reduce such barriers. It is important that cultural competency efforts not only address racial and ethnic competency but also be relevant to and inclusive of people with disabilities. In fact, Section 5307 of the ACA introduces improvements in cultural competency training for healthcare providers to better meet the needs of people with disabilities.

Limitations and Future Directions

Our analyses were limited to data in MEPS, which did not assess emotional function. A small proportion of people with no basic action limitations reported complex activity limitation; this subgroup may include individuals with difficulties in emotional function. Others in this group may have restrictions unrelated to their own conditions, as in the case of a mother who said she could not work because she was caring for her child with a disability (B. Altman, personal communication, March 25, 2011). The NHIS includes variables on emotional function and can be linked to the MEPS. Future studies with linked data could clarify the emotional functioning of people with complex activity limitations who were identified as non-disabled in our sample, and could explore disparities in having a USC for people with limitations in emotional functioning. The latter analysis is of particular interest given an emerging emphasis on integration of physical and mental health services. Having a USC was treated as an outcome in the present study, but is also a predictor of receipt of needed healthcare services. Subsequent
studies should examine whether the health impacts of lacking a USC are greater for people with
disabilities than for people without disabilities. This might well be the case given the greater
susceptibility of people with disabilities to health threats.

Conclusion

We found subgroup disparities among adults with disabilities that are very similar to
those in the non-disabled population. These results refute assumptions that all people with
disabilities have a USC and underscore the need for attention to disparities within the disability
population. Ensuring access to a USC for people in underserved groups who also have
disabilities is especially important due to the thinner margin of health experienced by people
with disabilities and the potentially greater consequences of not receiving timely care.

Interventions to increase USC access should address unique concerns of people with disabilities,
including physical and communication accessibility and need for disability-competent clinicians.
References

Hyattsville, MD: National Center for Health Statistics; 2008.

<table>
<thead>
<tr>
<th>Disability type</th>
<th>People With Disabilities</th>
<th>People Without Disabilities</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (weighted %)</td>
<td>N/A</td>
<td>N (weighted %)</td>
</tr>
<tr>
<td>Hearing limitations only</td>
<td>3,145 (15.4)</td>
<td>N/A</td>
<td>3,145 (15.4)</td>
</tr>
<tr>
<td>Vision limitations only</td>
<td>3,805 (15.4)</td>
<td>N/A</td>
<td>3,805 (15.4)</td>
</tr>
<tr>
<td>Cognitive limitations only</td>
<td>8,927 (34.8)</td>
<td>N/A</td>
<td>8,927 (34.8)</td>
</tr>
<tr>
<td>Physical limitations only</td>
<td>1,899 (6.8)</td>
<td>N/A</td>
<td>1,899 (6.8)</td>
</tr>
<tr>
<td>More than one type</td>
<td>7,922 (28.3)</td>
<td>N/A</td>
<td>7,922 (28.3)</td>
</tr>
</tbody>
</table>

Complex activity limitation

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>13,459 (56.7)</td>
<td>100,782 (97.6)</td>
<td>114,241 (89.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>12,239 (43.3)</td>
<td>2,653 (2.4)</td>
<td>14,892 (10.4)</td>
</tr>
</tbody>
</table>

Age (years)

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29</td>
<td>3,008 (12.4)</td>
<td>30,801 (29.5)</td>
<td>33,809 (26.1)</td>
</tr>
<tr>
<td>30-39</td>
<td>3,607 (13.4)</td>
<td>25,671 (23.6)</td>
<td>29,278 (21.6)</td>
</tr>
<tr>
<td>40-49</td>
<td>6,779 (26.3)</td>
<td>24,116 (23.4)</td>
<td>30,895 (23.9)</td>
</tr>
<tr>
<td>50-59</td>
<td>8,549 (33.1)</td>
<td>17,379 (17.6)</td>
<td>25,928 (20.6)</td>
</tr>
<tr>
<td>60-64</td>
<td>3,755 (14.8)</td>
<td>5,468 (5.9)</td>
<td>9,223 (7.7)</td>
</tr>
</tbody>
</table>

Sex

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>10,997 (46.9)</td>
<td>49,046 (49.8)</td>
<td>60,043 (49.3)</td>
</tr>
<tr>
<td>Female</td>
<td>14,701 (53.1)</td>
<td>54,389 (50.2)</td>
<td>69,090 (50.7)</td>
</tr>
</tbody>
</table>

Race and ethnicity *

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>15,430 (72.6)</td>
<td>51,801 (66.2)</td>
<td>67,231 (67.4)</td>
</tr>
<tr>
<td>Black</td>
<td>4,464 (12.2)</td>
<td>15,526 (11.6)</td>
<td>19,990 (11.7)</td>
</tr>
<tr>
<td>Other races †</td>
<td>4,294 (9.5)</td>
<td>28,624 (15.2)</td>
<td>32,918 (14.1)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,510 (5.7)</td>
<td>7,484 (7.0)</td>
<td>8,994 (6.8)</td>
</tr>
</tbody>
</table>

Resides in a MSA ‡

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA</td>
<td>19,794 (79.7)</td>
<td>86,515 (84.4)</td>
<td>106,309 (83.5)</td>
</tr>
<tr>
<td>Non-MSA</td>
<td>5,904 (20.3)</td>
<td>16,920 (15.6)</td>
<td>22,824 (16.5)</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥Bachelor’s</td>
<td>3,883 (19.0)</td>
<td>22,744 (28.1)</td>
<td>26,627 (26.3)</td>
</tr>
<tr>
<td>Other degree</td>
<td>2,003 (8.8)</td>
<td>7,235 (8.1)</td>
<td>9,238 (8.2)</td>
</tr>
<tr>
<td>GED or HS §</td>
<td>13,646 (55.4)</td>
<td>49,062 (48.4)</td>
<td>62,708 (49.8)</td>
</tr>
<tr>
<td>No GED or HS</td>
<td>6,166 (16.8)</td>
<td>24,394 (15.4)</td>
<td>30,560 (15.7)</td>
</tr>
</tbody>
</table>

Income ||

<table>
<thead>
<tr>
<th></th>
<th>N (weighted %)</th>
<th>N/A</th>
<th>N (weighted %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥400%</td>
<td>6,749 (34.5)</td>
<td>35,815 (44.8)</td>
<td>42,564 (42.8)</td>
</tr>
<tr>
<td>200 to <400%</td>
<td>6,964 (29.3)</td>
<td>31,719 (31.6)</td>
<td>38,683 (31.1)</td>
</tr>
<tr>
<td>125 to <200%</td>
<td>4,069 (13.6)</td>
<td>15,922 (11.4)</td>
<td>19,991 (11.8)</td>
</tr>
<tr>
<td>Health insurance status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>100 to <125%</td>
<td><100%</td>
<td>Total</td>
</tr>
<tr>
<td>Insured all year (any private)</td>
<td>1,590 (4.7)</td>
<td>6,326 (17.9)</td>
<td>25,698 (19.6)</td>
</tr>
<tr>
<td>Publicly insured all year</td>
<td>5,342 (3.2)</td>
<td>14,637 (9.1)</td>
<td>103,435 (80.4)</td>
</tr>
<tr>
<td>Uninsured part of the year</td>
<td>6,932 (3.5)</td>
<td>20,963 (10.8)</td>
<td>129,133 (100)</td>
</tr>
<tr>
<td>Uninsured all year</td>
<td>1,590 (4.7)</td>
<td>6,326 (17.9)</td>
<td>25,698 (19.6)</td>
</tr>
<tr>
<td>Total</td>
<td>11,879 (54.8)</td>
<td>59,291 (66.5)</td>
<td>71,170 (64.2)</td>
</tr>
<tr>
<td>6,270 (18.1)</td>
<td>7,575 (4.9)</td>
<td>13,845 (7.5)</td>
<td></td>
</tr>
<tr>
<td>3,048 (11.5)</td>
<td>13,194 (11.6)</td>
<td>16,242 (11.6)</td>
<td></td>
</tr>
<tr>
<td>4,501 (15.5)</td>
<td>23,375 (17.0)</td>
<td>27,876 (16.7)</td>
<td></td>
</tr>
</tbody>
</table>

* Except "Hispanic" all race categories are non-Hispanic
† Includes American Indian or Alaska Native; Asian, Native Hawaiian or Pacific Islander; and Multiple Races
‡ Metropolitan Statistical Area (MSA)
§ General Educational Development (GED) or high school diploma (HS)
|| Family income as percent (%) of the Federal Poverty Line
Table 2: Crude odds of having a usual source of health care among adults age 18-64 years

<table>
<thead>
<tr>
<th>Complex activity limitation</th>
<th>People With Disabilities</th>
<th>People Without Disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=25,698</td>
<td>n=103,435</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Complex activity limitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>1.77</td>
<td>1.63,1.92</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>30-39</td>
<td>1.93</td>
<td>1.68,2.22</td>
</tr>
<tr>
<td>40-49</td>
<td>2.57</td>
<td>2.28,2.89</td>
</tr>
<tr>
<td>50-59</td>
<td>4.66</td>
<td>4.05,5.37</td>
</tr>
<tr>
<td>60-64</td>
<td>6.27</td>
<td>5.22,7.53</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Female</td>
<td>1.62</td>
<td>1.49,1.76</td>
</tr>
<tr>
<td>Race & ethnicity †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Black</td>
<td>0.75</td>
<td>0.66,0.84</td>
</tr>
<tr>
<td>Other races ‡</td>
<td>0.49</td>
<td>0.44,0.55</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.78</td>
<td>0.65,0.94</td>
</tr>
<tr>
<td>Resides in a MSA §</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Non-MSA</td>
<td>1.12</td>
<td>0.98,1.28</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥Bachelor's</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Other degree</td>
<td>0.95</td>
<td>0.75,1.19</td>
</tr>
<tr>
<td>GED or HS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GED or HS</td>
<td>0.49</td>
<td>0.41,0.57</td>
</tr>
<tr>
<td>Income ¶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥400%</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>200 to <400%</td>
<td>0.60</td>
<td>0.53,0.68</td>
</tr>
<tr>
<td>125 to <200%</td>
<td>0.44</td>
<td>0.38,0.51</td>
</tr>
<tr>
<td>100 to <125%</td>
<td>0.38</td>
<td>0.32,0.46</td>
</tr>
<tr>
<td><100%</td>
<td>0.39</td>
<td>0.34,0.45</td>
</tr>
<tr>
<td>Health insurance status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insured all year (any private)</td>
<td>Ref.</td>
<td>-</td>
</tr>
<tr>
<td>Publicly insured all year</td>
<td>1.03</td>
<td>0.89,1.20</td>
</tr>
<tr>
<td>Uninsured part of the year</td>
<td>0.28</td>
<td>0.25,0.32</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Uninsured all year</td>
<td>0.16</td>
<td>0.14,0.19</td>
</tr>
</tbody>
</table>

* Odds ratio (OR), 95% confidence interval (95% CI) and p-value (p)
† Except "Hispanic" all race categories are non-Hispanic
‡ Includes American Indian or Alaska Native; Asian, Native Hawaiian or Pacific Islander; and Multiple Races
§ Metropolitan Statistical Area (MSA)
|| General Educational Development (GED) or high school diploma (HS)
¶ Family income as percent (%) of the Federal Poverty Line
Table 3: Adjusted odds of having a usual source of health care among adults age 18-64 years

<table>
<thead>
<tr>
<th>Disability type</th>
<th>AOR*</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No disability</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing impairment only</td>
<td>1.24</td>
<td>1.10,1.40</td>
<td><0.01</td>
</tr>
<tr>
<td>Vision impairment only</td>
<td>0.98</td>
<td>0.88,1.09</td>
<td>0.70</td>
</tr>
<tr>
<td>Cognitive limitations only</td>
<td>1.08</td>
<td>0.93,1.26</td>
<td>0.32</td>
</tr>
<tr>
<td>Physical limitations only</td>
<td>1.32</td>
<td>1.20,1.45</td>
<td><0.01</td>
</tr>
<tr>
<td>More than one type</td>
<td>1.24</td>
<td>1.11,1.37</td>
<td><0.01</td>
</tr>
<tr>
<td>Complex activity limitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.62</td>
<td>1.48,1.77</td>
<td><0.01</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>1.22</td>
<td>1.16,1.29</td>
<td><0.01</td>
</tr>
<tr>
<td>40-49</td>
<td>1.71</td>
<td>1.62,1.80</td>
<td><0.01</td>
</tr>
<tr>
<td>50-59</td>
<td>2.38</td>
<td>2.23,2.54</td>
<td><0.01</td>
</tr>
<tr>
<td>60-64</td>
<td>3.27</td>
<td>2.95,3.61</td>
<td><0.01</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.85</td>
<td>1.79,1.92</td>
<td><0.01</td>
</tr>
<tr>
<td>Race & ethnicity †</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.75</td>
<td>0.71,0.80</td>
<td><0.01</td>
</tr>
<tr>
<td>Other races ‡</td>
<td>0.63</td>
<td>0.59,0.68</td>
<td><0.01</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.74</td>
<td>0.68,0.81</td>
<td><0.01</td>
</tr>
<tr>
<td>Resides in a MSA §</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-MSA</td>
<td>1.18</td>
<td>1.08,1.29</td>
<td><0.01</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥Bachelor's</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other degree</td>
<td>1.20</td>
<td>1.09,1.32</td>
<td><0.01</td>
</tr>
<tr>
<td>GED or HS ‖</td>
<td>1.08</td>
<td>1.02,1.15</td>
<td>0.02</td>
</tr>
<tr>
<td>No GED or HS</td>
<td>1.08</td>
<td>1.00,1.16</td>
<td>0.04</td>
</tr>
<tr>
<td>Income ‖</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥400%</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 to <400%</td>
<td>0.84</td>
<td>0.79,0.89</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Adjusted odds ratio (AOR)</td>
<td>95% CI</td>
<td>p-value (p)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>125 to <200%</td>
<td>0.73</td>
<td>0.69, 0.78</td>
<td><0.01</td>
</tr>
<tr>
<td>100 to <125%</td>
<td>0.71</td>
<td>0.64, 0.77</td>
<td><0.01</td>
</tr>
<tr>
<td><100%</td>
<td>0.66</td>
<td>0.61, 0.70</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Health insurance status

<table>
<thead>
<tr>
<th>Health insurance status</th>
<th>Adjusted odds ratio (AOR)</th>
<th>95% CI</th>
<th>p-value (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insured all year (any private)</td>
<td>Ref.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Publicly insured all year</td>
<td>1.16</td>
<td>1.06, 1.27</td>
<td><0.01</td>
</tr>
<tr>
<td>Uninsured part of the year</td>
<td>0.44</td>
<td>0.42, 0.47</td>
<td><0.01</td>
</tr>
<tr>
<td>Uninsured all year</td>
<td>0.22</td>
<td>0.21, 0.24</td>
<td><0.01</td>
</tr>
</tbody>
</table>

* Adjusted odds ratio (AOR), 95% confidence interval (95% CI) and p-value (p)
† Except "Hispanic" all race categories are non-Hispanic
‡ Includes American Indian or Alaska Native; Asian, Native Hawaiian or Pacific Islander; and Multiple Races
§ Metropolitan Statistical Area (MSA)
∥ General Educational Development (GED) or high school diploma (HS)
¶ Family income as percent (%) of the Federal Poverty Line